dc.contributor.author |
BISWAS, ANUP |
en_US |
dc.contributor.author |
Lorinczi, Jozsef |
en_US |
dc.date.accessioned |
2019-09-09T11:26:39Z |
|
dc.date.available |
2019-09-09T11:26:39Z |
|
dc.date.issued |
2018-10 |
en_US |
dc.identifier.citation |
Fractional Calculus and Applied Analysis, 21(5). |
en_US |
dc.identifier.issn |
1311-0454 |
en_US |
dc.identifier.issn |
1314-2224 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3867 |
|
dc.identifier.uri |
https://doi.org/10.1515/fca-2018-0070 |
en_US |
dc.description.abstract |
We show a strong maximum principle and an Alexandrov-Bakelman-Pucci estimate for the weak solutions of a Cauchy problem featuring Caputo time-derivatives and non-local operators in space variables given in terms of Bernstein functions of the Laplacian. To achieve this, first we propose a suitable meaning of a weak solution, show their existence and uniqueness, and establish a probabilistic representation in terms of time-changed Brownian motion. As an application, we also discuss an inverse source problem. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
De Gruyter |
en_US |
dc.subject |
Caputo time-derivatives |
en_US |
dc.subject |
Non-local operators |
en_US |
dc.subject |
Bernstein functions of the Laplacian |
en_US |
dc.subject |
Non-local Dirichlet problem |
en_US |
dc.subject |
ABP estimate |
en_US |
dc.subject |
Strong maximum principle |
en_US |
dc.subject |
Mittag-Leffler function |
en_US |
dc.subject |
Fractional Duhamel's principle |
en_US |
dc.subject |
2018 |
en_US |
dc.title |
Maximum principles for time-fractional Cauchy problems with spatially non-local components |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Fractional Calculus and Applied Analysis |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |