dc.contributor.author |
Dubey, Umesh, V |
en_US |
dc.contributor.author |
MALLICK, VIVEK MOHAN |
en_US |
dc.date.accessioned |
2019-11-29T12:01:06Z |
|
dc.date.available |
2019-11-29T12:01:06Z |
|
dc.date.issued |
2020-01 |
en_US |
dc.identifier.citation |
Journal of Algebra, 541, 174-218. |
en_US |
dc.identifier.issn |
0021-8693 |
en_US |
dc.identifier.issn |
1090-266X |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4212 |
|
dc.identifier.uri |
https://doi.org/10.1016/j.jalgebra.2019.08.034 |
en_US |
dc.description.abstract |
The Eilenberg-Moore construction for modules over a differential graded monad is used to study a question of Balmer regarding existence of an exact adjoint pair representing an exact monad. A Bousfield-like localization for differential graded categories is realized as a special case of this construction using Drinfeld quotients. As applications, we study some example coming from G-equivariant triangulated categories and twisted derived categories. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Differential graded categories |
en_US |
dc.subject |
Monads |
en_US |
dc.subject |
Triangulated categories |
en_US |
dc.subject |
Equivariant categories |
en_US |
dc.subject |
Localization |
en_US |
dc.subject |
Twisted derived categories |
en_US |
dc.subject |
TOC-NOV-2019 |
en_US |
dc.subject |
2020 |
en_US |
dc.subject |
2020 |
en_US |
dc.title |
On the differential graded Eilenberg-Moore construction |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Algebra |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |