Digital Repository

On the differential graded Eilenberg-Moore construction

Show simple item record

dc.contributor.author Dubey, Umesh, V en_US
dc.contributor.author MALLICK, VIVEK MOHAN en_US
dc.date.accessioned 2019-11-29T12:01:06Z
dc.date.available 2019-11-29T12:01:06Z
dc.date.issued 2020-01 en_US
dc.identifier.citation Journal of Algebra, 541, 174-218. en_US
dc.identifier.issn 0021-8693 en_US
dc.identifier.issn 1090-266X en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4212
dc.identifier.uri https://doi.org/10.1016/j.jalgebra.2019.08.034 en_US
dc.description.abstract The Eilenberg-Moore construction for modules over a differential graded monad is used to study a question of Balmer regarding existence of an exact adjoint pair representing an exact monad. A Bousfield-like localization for differential graded categories is realized as a special case of this construction using Drinfeld quotients. As applications, we study some example coming from G-equivariant triangulated categories and twisted derived categories. en_US
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.subject Differential graded categories en_US
dc.subject Monads en_US
dc.subject Triangulated categories en_US
dc.subject Equivariant categories en_US
dc.subject Localization en_US
dc.subject Twisted derived categories en_US
dc.subject TOC-NOV-2019 en_US
dc.subject 2020 en_US
dc.subject 2020 en_US
dc.title On the differential graded Eilenberg-Moore construction en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Journal of Algebra en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account