dc.contributor.author |
GANGULY, JYOTIRMOY |
en_US |
dc.contributor.author |
SPALLONE, STEVEN |
en_US |
dc.date.accessioned |
2019-12-24T12:19:30Z |
|
dc.date.available |
2019-12-24T12:19:30Z |
|
dc.date.issued |
2020-02 |
en_US |
dc.identifier.citation |
Journal of Algebra, 544, 29-46. |
en_US |
dc.identifier.issn |
0021-8693 |
en_US |
dc.identifier.issn |
1090-266X |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4279 |
|
dc.identifier.uri |
https://doi.org/10.1016/j.jalgebra.2019.09.025 |
en_US |
dc.description.abstract |
A real representation ( )pi of a finite group may be regarded as a homomorphism to an orthogonal group O(V). For symmetric groups S-n, alternating groups A(n), and products S-n x S-n' of symmetric groups, we give criteria for whether it lifts to the double cover Pin(V) of O(V), in terms of character values. From these criteria we compute the second Stiefel-Whitney classes of these representations. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Symmetric groups |
en_US |
dc.subject |
Representation theory |
en_US |
dc.subject |
Spinoriality |
en_US |
dc.subject |
Stiefel-Whitney class |
en_US |
dc.subject |
Spin structure |
en_US |
dc.subject |
Alternating groups |
en_US |
dc.subject |
TOC-DEC-2019 |
en_US |
dc.subject |
2020 |
en_US |
dc.title |
Spinorial representations of symmetric groups |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Algebra |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |