Digital Repository

Arakelov self-intersection numbers of minimal regular models of modular curves X0(p2)

Show simple item record

dc.contributor.author BANERJEE, DEBARGHA en_US
dc.contributor.author BORAH, DIGANTA en_US
dc.contributor.author CHAUDHURI, CHITRABHANU en_US
dc.date.accessioned 2020-02-26T06:40:40Z
dc.date.available 2020-02-26T06:40:40Z
dc.date.issued 2020-12 en_US
dc.identifier.citation Mathematische Zeitschrift, 296, (3-4), 1287–1329. en_US
dc.identifier.issn 0025-5874 en_US
dc.identifier.issn 1432-1823 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4449
dc.identifier.uri https://doi.org/10.1007/s00209-020-02480-1 en_US
dc.description.abstract We compute an asymptotic expression for the Arakelov self-intersection number of the relative dualizing sheaf of Edixhoven’s minimal regular model for the modular curve X0(p2) over Q. The computation of the self-intersection numbers are used to prove an effective version of the Bogolomov conjecture for the semi-stable models of modular curves X0(p2) and obtain a bound on the stable Faltings height for those curves in a companion article (Banerjee and Chaudhuri in Isr J Math, 2020). en_US
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.subject Arakelov theory en_US
dc.subject Heights en_US
dc.subject Eisenstein series en_US
dc.subject 2020 en_US
dc.subject TOC-MAR-2020 en_US
dc.subject 2020-MAR-WEEK1 en_US
dc.title Arakelov self-intersection numbers of minimal regular models of modular curves X0(p2) en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Mathematische Zeitschrift en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account