dc.contributor.author |
BANERJEE, DEBARGHA |
en_US |
dc.contributor.author |
BORAH, DIGANTA |
en_US |
dc.contributor.author |
CHAUDHURI, CHITRABHANU |
en_US |
dc.date.accessioned |
2020-02-26T06:40:40Z |
|
dc.date.available |
2020-02-26T06:40:40Z |
|
dc.date.issued |
2020-12 |
en_US |
dc.identifier.citation |
Mathematische Zeitschrift, 296, (3-4), 1287–1329. |
en_US |
dc.identifier.issn |
0025-5874 |
en_US |
dc.identifier.issn |
1432-1823 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4449 |
|
dc.identifier.uri |
https://doi.org/10.1007/s00209-020-02480-1 |
en_US |
dc.description.abstract |
We compute an asymptotic expression for the Arakelov self-intersection number of the relative dualizing sheaf of Edixhoven’s minimal regular model for the modular curve X0(p2) over Q. The computation of the self-intersection numbers are used to prove an effective version of the Bogolomov conjecture for the semi-stable models of modular curves X0(p2) and obtain a bound on the stable Faltings height for those curves in a companion article (Banerjee and Chaudhuri in Isr J Math, 2020). |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Arakelov theory |
en_US |
dc.subject |
Heights |
en_US |
dc.subject |
Eisenstein series |
en_US |
dc.subject |
2020 |
en_US |
dc.subject |
TOC-MAR-2020 |
en_US |
dc.subject |
2020-MAR-WEEK1 |
en_US |
dc.title |
Arakelov self-intersection numbers of minimal regular models of modular curves X0(p2) |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Mathematische Zeitschrift |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |