dc.contributor.author |
PAL, RATNA |
en_US |
dc.date.accessioned |
2020-02-26T06:40:40Z |
|
dc.date.available |
2020-02-26T06:40:40Z |
|
dc.date.issued |
2020-04 |
en_US |
dc.identifier.citation |
Journal of Mathematical Analysis and Applications, 484(2). |
en_US |
dc.identifier.issn |
0022-247X |
en_US |
dc.identifier.issn |
1096-0813 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4454 |
|
dc.identifier.uri |
https://doi.org/10.1016/j.jmaa.2019.123658 |
en_US |
dc.description.abstract |
For a Henon map H in C-2, we characterize the polynomial automorphisms of C-2 which keep any fixed level set of the Green function of H completely invariant. The interior of any non-zero sublevel set of the Green function of a Henon map turns out to be a Short C-2 and as a consequence of our characterization, it follows that there exists no polynomial automorphism apart from possibly the affine automorphisms which acts as an automorphism on any of these Short C-2's. Further, we prove that if any two level sets of the Green functions of a pair of Henon maps coincide, then they almost commute. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Henon maps |
en_US |
dc.subject |
Julia sets |
en_US |
dc.subject |
Rigidity |
en_US |
dc.subject |
Green functions |
en_US |
dc.subject |
TOC-FEB-2020 |
en_US |
dc.subject |
2020 |
en_US |
dc.title |
Further remarks on rigidity of Henon maps |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Mathematical Analysis and Applications |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |