Digital Repository

Further remarks on rigidity of Henon maps

Show simple item record

dc.contributor.author PAL, RATNA en_US
dc.date.accessioned 2020-02-26T06:40:40Z
dc.date.available 2020-02-26T06:40:40Z
dc.date.issued 2020-04 en_US
dc.identifier.citation Journal of Mathematical Analysis and Applications, 484(2). en_US
dc.identifier.issn 0022-247X en_US
dc.identifier.issn 1096-0813 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4454
dc.identifier.uri https://doi.org/10.1016/j.jmaa.2019.123658 en_US
dc.description.abstract For a Henon map H in C-2, we characterize the polynomial automorphisms of C-2 which keep any fixed level set of the Green function of H completely invariant. The interior of any non-zero sublevel set of the Green function of a Henon map turns out to be a Short C-2 and as a consequence of our characterization, it follows that there exists no polynomial automorphism apart from possibly the affine automorphisms which acts as an automorphism on any of these Short C-2's. Further, we prove that if any two level sets of the Green functions of a pair of Henon maps coincide, then they almost commute. en_US
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.subject Henon maps en_US
dc.subject Julia sets en_US
dc.subject Rigidity en_US
dc.subject Green functions en_US
dc.subject TOC-FEB-2020 en_US
dc.subject 2020 en_US
dc.title Further remarks on rigidity of Henon maps en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Journal of Mathematical Analysis and Applications en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account