dc.contributor.author |
Lemaire, Bertrand |
en_US |
dc.contributor.author |
MISHRA, MANISH |
en_US |
dc.date.accessioned |
2020-02-26T06:40:41Z |
|
dc.date.available |
2020-02-26T06:40:41Z |
|
dc.date.issued |
2020-03 |
en_US |
dc.identifier.citation |
Compositio Mathematica, 156(3), 533-603. |
en_US |
dc.identifier.issn |
0010-437X |
en_US |
dc.identifier.issn |
1570-5846 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4456 |
|
dc.identifier.uri |
https://doi.org/10.1112/S0010437X19007838 |
en_US |
dc.description.abstract |
Let F be a non-Archimedean local field, G a connected reductive group defined and split over F, and T a maximal F-split torus in G. Let chi(0) be a depth-zero character of the maximal compact subgroup T of T(F). This gives by inflation a character rho of an Iwahori subgroup J subset of T of G(F). From Roche [Types and Hecke algebras for principal series representations of split reductive p-adic groups, Ann. Sci. Ec. Norm. Super. (4) 31 (1998), 361-413], chi(0) defines a reductive F-split group (G) over tilde' whose connected component G' is an endoscopic group of G, and there is an isomorphism of C-algebras H(G(F), rho) -> H((G) over tilde'(F), 1(J)) where H(G(F), rho) is the Hecke algebra of compactly supported p(-1) spherical functions on G(F) and J' is an Iwahori subgroup of G'(F). This isomorphism gives by restriction an injective morphism zeta : Z(G(F), rho) -> Z(G' (F), 1(J')) between the centers of the Hecke algebras. We prove here that a certain linear combination of morphisms analogous to zeta realizes the transfer (matching of strongly G-regular semi-simple orbital integrals). If char(F) - p > 0, our result is unconditional only if p is large enough. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Cambridge University Press |
en_US |
dc.subject |
Hecke algebra isomorphisms |
en_US |
dc.subject |
Geometric transfer |
en_US |
dc.subject |
Local data |
en_US |
dc.subject |
TOC-FEB-2020 |
en_US |
dc.subject |
2020 |
en_US |
dc.title |
Matching of orbital integrals (transfer) and Roche Hecke algebra isomorphisms |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Compositio Mathematica |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |