Digital Repository

Deep Holes of Projective Reed-Solomon Codes

Show simple item record

dc.contributor.author Zhang, Jun en_US
dc.contributor.author Wan, Daqing en_US
dc.contributor.author KAIPA, KRISHNA en_US
dc.date.accessioned 2020-03-27T04:13:39Z
dc.date.available 2020-03-27T04:13:39Z
dc.date.issued 2020-04 en_US
dc.identifier.citation IEEE Transactions on Information Theory, 66(4), 2392 – 2401. en_US
dc.identifier.issn 0018-9448 en_US
dc.identifier.issn 0018-9448 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4507
dc.identifier.uri https://doi.org/10.1109/TIT.2019.2940962 en_US
dc.description.abstract Projective Reed-Solomon (PRS) codes are Reed-Solomon codes of the maximum possible length $q+1$ . The classification of deep holes –received words with maximum possible error distance– for PRS codes is an important and difficult problem. In this paper, we use algebraic methods to explicitly construct three classes of deep holes for PRS codes. We show that these three classes completely classify all deep holes of PRS codes with redundancy four. Previously, the deep hole classification was only known for PRS codes with redundancy at most three. en_US
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.subject Projective Reed-Solomon en_US
dc.subject Reed-Solomon codes en_US
dc.subject TOC-MAR-2020 en_US
dc.subject 2020 en_US
dc.subject 2020-MAR-WEEK4 en_US
dc.title Deep Holes of Projective Reed-Solomon Codes en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle IEEE Transactions on Information Theory en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account