dc.contributor.author |
BISWAS, ANUP |
en_US |
dc.date.accessioned |
2020-03-27T04:13:40Z |
|
dc.date.available |
2020-03-27T04:13:40Z |
|
dc.date.issued |
2020-04 |
en_US |
dc.identifier.citation |
Journal of Differential Equations, 268(9), 257-5282. |
en_US |
dc.identifier.issn |
0022-0396 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4512 |
|
dc.identifier.uri |
https://doi.org/10.1016/j.jde.2019.11.011 |
en_US |
dc.description.abstract |
We consider a class of nonlinear integro-differential operators and prove existence of two principal (half) eigenvalues in bounded smooth domains with exterior Dirichlet condition. We then establish simplicity of the principal eigenfunctions in viscosity sense, maximum principles, continuity property of the principal eigenvalues with respect to domains etc. We also prove an anti-maximum principle and study existence result for some nonlinear problem via Rabinowitz bifurcation-type results. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Principal eigenvalue |
en_US |
dc.subject |
Fractional Laplacian |
en_US |
dc.subject |
Nonlocal operators |
en_US |
dc.subject |
Ground state |
en_US |
dc.subject |
Anti-maximum principle |
en_US |
dc.subject |
Dirichlet problem |
en_US |
dc.subject |
TOC-MAR-2020 |
en_US |
dc.subject |
2020 |
en_US |
dc.subject |
2020-MAR-WEEK4 |
en_US |
dc.title |
Principal eigenvalues of a class of nonlinear integro-differential operators |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Differential Equations |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |