Abstract:
Bi3+ and lanthanide ions have been codoped in metal oxides as optical sensitizers and emitters. But such codoping is not known in typical semiconductors such as Si, GaAs, and CdSe. Metal halide perovskite with coordination number 6 provides an opportunity to codope Bi3+ and lanthanide ions. Codoping of Bi3+ and Ln3+ (Ln=Er and Yb) in Cs2AgInCl6 double perovskite is presented. Bi3+‐Er3+ codoped Cs2AgInCl6 shows Er3+ f‐electron emission at 1540 nm (suitable for low‐loss optical communication). Bi3+ codoping decreases the excitation (absorption) energy, such that the samples can be excited with ca. 370 nm light. At that excitation, Bi3+‐Er3+ codoped Cs2AgInCl6 shows ca. 45 times higher emission intensity compared to the Er3+ doped Cs2AgInCl6. Similar results are also observed in Bi3+‐Yb3+ codoped sample emitting at 994 nm. A combination of temperature‐dependent (5.7 K to 423 K) photoluminescence and calculations is used to understand the optical sensitization and emission processes.