dc.contributor.author |
Bhunia, Sushil |
en_US |
dc.contributor.author |
MAHALANOBIS, AYAN |
en_US |
dc.contributor.author |
SHINDE, PRALHAD |
en_US |
dc.contributor.author |
SINGH, ANUPAM KUMAR |
en_US |
dc.date.accessioned |
2020-04-30T06:03:03Z |
|
dc.date.available |
2020-04-30T06:03:03Z |
|
dc.date.issued |
2020-07 |
en_US |
dc.identifier.citation |
Advances in Applied Clifford Algebras, 30(3). |
en_US |
dc.identifier.issn |
0188-7009 |
en_US |
dc.identifier.issn |
1661-4909 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4568 |
|
dc.identifier.uri |
https://doi.org/10.1007/s00006-020-01054-y |
en_US |
dc.description.abstract |
This paper presents some algorithms in linear algebraic groups. These algorithms solve the word problem and compute the spinor norm for orthogonal groups. This gives us an algorithmic definition of the spinor norm. We compute the double coset decomposition with respect to a Siegel maximal parabolic subgroup, which is important in computing infinite-dimensional representations for some algebraic groups. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Symplectic similitude group |
en_US |
dc.subject |
Orthogonal similitude group |
en_US |
dc.subject |
Word problem |
en_US |
dc.subject |
Gaussian elimination |
en_US |
dc.subject |
Spinor norm |
en_US |
dc.subject |
Double coset decomposition |
en_US |
dc.subject |
TOC-APR-2020 |
en_US |
dc.subject |
2020 |
en_US |
dc.subject |
2020-APR-WEEK5 |
en_US |
dc.title |
Algorithms in Linear Algebraic Groups |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Advances in Applied Clifford Algebras |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |