dc.contributor.author |
Adler, Jeffrey D. |
en_US |
dc.contributor.author |
MISHRA, MANISH |
en_US |
dc.date.accessioned |
2020-06-23T07:02:11Z |
|
dc.date.available |
2020-06-23T07:02:11Z |
|
dc.date.issued |
2020-06 |
en_US |
dc.identifier.citation |
Representation Theory, 24, 210-228. |
en_US |
dc.identifier.issn |
1088-4165 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4829 |
|
dc.identifier.uri |
https://doi.org/10.1090/ert/541 |
en_US |
dc.description.abstract |
Let G be a connected reductive group over a finite field f of order q. When q <= 5, we make further assumptions on G. Then we determine precisely when G(f) admits irreducible, cuspidal representations that are self-dual, of Deligne-Lusztig type, or both. Finally, we outline some consequences for the existence of self-dual supercuspidal representations of reductive p-adic groups. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
American Mathematical Society |
en_US |
dc.subject |
Finite reductive group |
en_US |
dc.subject |
p-adic group |
en_US |
dc.subject |
Cuspidal representation |
en_US |
dc.subject |
Super-cuspidal representation |
en_US |
dc.subject |
Self-dual |
en_US |
dc.subject |
TOC-JUN-2020 |
en_US |
dc.subject |
2020 |
en_US |
dc.subject |
2020-JUN-WEEK3 |
en_US |
dc.title |
Self-Dual Cuspidal Representations |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Representation Theory |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |