Digital Repository

Ambrosetti–Prodi Type Results for Dirichlet Problems of Fractional Laplacian-Like Operators

Show simple item record

dc.contributor.author BISWAS, ANUP en_US
dc.contributor.author Lorinczi, Jozsef en_US
dc.date.accessioned 2020-06-30T11:16:19Z
dc.date.available 2020-06-30T11:16:19Z
dc.date.issued 2020-06 en_US
dc.identifier.citation Integral Equations and Operator Theory, 92(3). en_US
dc.identifier.issn - en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4850
dc.identifier.uri https://doi.org/10.1007/s00020-020-02584-7 en_US
dc.description.abstract We establish Ambrosetti–Prodi type results for viscosity and classical solutions of nonlinear Dirichlet problems for fractional Laplace and comparable operators. In the choice of nonlinearities we consider semi-linear and super-linear growth cases separately. We develop a new technique using a functional integration-based approach, which is more robust in the non-local context than a purely analytic treatment. en_US
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.subject Semi-linear nonlocal exterior value problem en_US
dc.subject Ambrosetti–Prodi problem en_US
dc.subject Viscosity solutions en_US
dc.subject Bifurcations en_US
dc.subject Fractional Schrödinger operator en_US
dc.subject Principal eigenvalues en_US
dc.subject Maximum principles en_US
dc.subject TOC-JUN-2020 en_US
dc.subject 2020 en_US
dc.subject 2020-JUL-WEEK1 en_US
dc.title Ambrosetti–Prodi Type Results for Dirichlet Problems of Fractional Laplacian-Like Operators en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Integral Equations and Operator Theory en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account