dc.contributor.author |
BISWAS, ANUP |
en_US |
dc.contributor.author |
Lorinczi, Jozsef |
en_US |
dc.date.accessioned |
2020-06-30T11:16:19Z |
|
dc.date.available |
2020-06-30T11:16:19Z |
|
dc.date.issued |
2020-06 |
en_US |
dc.identifier.citation |
Integral Equations and Operator Theory, 92(3). |
en_US |
dc.identifier.issn |
- |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4850 |
|
dc.identifier.uri |
https://doi.org/10.1007/s00020-020-02584-7 |
en_US |
dc.description.abstract |
We establish Ambrosetti–Prodi type results for viscosity and classical solutions of nonlinear Dirichlet problems for fractional Laplace and comparable operators. In the choice of nonlinearities we consider semi-linear and super-linear growth cases separately. We develop a new technique using a functional integration-based approach, which is more robust in the non-local context than a purely analytic treatment. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Semi-linear nonlocal exterior value problem |
en_US |
dc.subject |
Ambrosetti–Prodi problem |
en_US |
dc.subject |
Viscosity solutions |
en_US |
dc.subject |
Bifurcations |
en_US |
dc.subject |
Fractional Schrödinger operator |
en_US |
dc.subject |
Principal eigenvalues |
en_US |
dc.subject |
Maximum principles |
en_US |
dc.subject |
TOC-JUN-2020 |
en_US |
dc.subject |
2020 |
en_US |
dc.subject |
2020-JUL-WEEK1 |
en_US |
dc.title |
Ambrosetti–Prodi Type Results for Dirichlet Problems of Fractional Laplacian-Like Operators |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Integral Equations and Operator Theory |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |