dc.contributor.author |
Arapostathis, Ari |
en_US |
dc.contributor.author |
BISWAS, ANUP |
en_US |
dc.date.accessioned |
2020-07-24T05:59:04Z |
|
dc.date.available |
2020-07-24T05:59:04Z |
|
dc.date.issued |
2020 |
en_US |
dc.identifier.citation |
SIAM Journal on Control and Optimization, 58(1), 85–103. |
en_US |
dc.identifier.issn |
0363-0129 |
en_US |
dc.identifier.issn |
1095-7138 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4892 |
|
dc.identifier.uri |
https://doi.org/10.1137/18M1218704 |
en_US |
dc.description.abstract |
We address the variational problem for the generalized principal eigenvalue on $\mathbb{R}^d$ of linear and semilinear elliptic operators associated with nondegenerate diffusions controlled through the drift. We establish the Collatz--Wielandt formula for potentials that vanish at infinity under minimal hypotheses, and also for general potentials under blanket geometric ergodicity assumptions. We also present associated results having the flavor of a refined maximum principle. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Society for Industrial and Applied Mathematics |
en_US |
dc.subject |
Mathematics |
en_US |
dc.subject |
TOC-JUL-2020 |
en_US |
dc.subject |
2020 |
en_US |
dc.subject |
2020-JUL-WEEK4 |
en_US |
dc.title |
A Variational Formula for Risk-Sensitive Control of Diffusions in $\mathbb{R}^d$ |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
SIAM Journal on Control and Optimization |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |