dc.contributor.author |
BHAKTA, MOUSOMI |
en_US |
dc.contributor.author |
BISWAS, ANUP |
en_US |
dc.contributor.author |
GANGULY, DEBDIP |
en_US |
dc.contributor.author |
Montoro, Luigi |
en_US |
dc.date.accessioned |
2020-08-07T07:23:40Z |
|
dc.date.available |
2020-08-07T07:23:40Z |
|
dc.date.issued |
2020-09 |
en_US |
dc.identifier.citation |
Journal of Differential Equations, 269(7), 5573-5594. |
en_US |
dc.identifier.issn |
1090-2732 |
en_US |
dc.identifier.issn |
0022-0396 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4937 |
|
dc.identifier.uri |
https://doi.org/10.1016/j.jde.2020.04.022 |
en_US |
dc.description.abstract |
Our main aim is to study Green function for the fractional Hardy operator P := (-Delta)(s) - theta/vertical bar x vertical bar(2s) in R-N, where 0 < theta< Lambda(Ns) and Lambda(N,s) is the best constant in the fractional Hardy inequality. Using Green function, we also show that the integral representation of the weak solution holds. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Fractional Laplacian |
en_US |
dc.subject |
Hardy operator |
en_US |
dc.subject |
Green function |
en_US |
dc.subject |
Integral representation |
en_US |
dc.subject |
Hardy equation |
en_US |
dc.subject |
Semigroup |
en_US |
dc.subject |
TOC-AUG-2020 |
en_US |
dc.subject |
2020 |
en_US |
dc.subject |
2020-AUG-WEEK1 |
en_US |
dc.title |
Integral representation of solutions using Green function for fractional Hardy equations |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Differential Equations |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |