Digital Repository

Integral representation of solutions using Green function for fractional Hardy equations

Show simple item record

dc.contributor.author BHAKTA, MOUSOMI en_US
dc.contributor.author BISWAS, ANUP en_US
dc.contributor.author GANGULY, DEBDIP en_US
dc.contributor.author Montoro, Luigi en_US
dc.date.accessioned 2020-08-07T07:23:40Z
dc.date.available 2020-08-07T07:23:40Z
dc.date.issued 2020-09 en_US
dc.identifier.citation Journal of Differential Equations, 269(7), 5573-5594. en_US
dc.identifier.issn 1090-2732 en_US
dc.identifier.issn 0022-0396 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4937
dc.identifier.uri https://doi.org/10.1016/j.jde.2020.04.022 en_US
dc.description.abstract Our main aim is to study Green function for the fractional Hardy operator P := (-Delta)(s) - theta/vertical bar x vertical bar(2s) in R-N, where 0 < theta< Lambda(Ns) and Lambda(N,s) is the best constant in the fractional Hardy inequality. Using Green function, we also show that the integral representation of the weak solution holds. en_US
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.subject Fractional Laplacian en_US
dc.subject Hardy operator en_US
dc.subject Green function en_US
dc.subject Integral representation en_US
dc.subject Hardy equation en_US
dc.subject Semigroup en_US
dc.subject TOC-AUG-2020 en_US
dc.subject 2020 en_US
dc.subject 2020-AUG-WEEK1 en_US
dc.title Integral representation of solutions using Green function for fractional Hardy equations en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Journal of Differential Equations en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account