dc.contributor.author |
Ghosh, Mrinal K. |
en_US |
dc.contributor.author |
Kumar, K. Suresh |
en_US |
dc.contributor.author |
Pal, Chandan |
en_US |
dc.contributor.author |
PRADHAN, SOMNATH |
en_US |
dc.date.accessioned |
2020-08-07T08:43:41Z |
|
dc.date.available |
2020-08-07T08:43:41Z |
|
dc.date.issued |
2021 |
en_US |
dc.identifier.citation |
Stochastic Analysis and Applications, 39(2), 306-326. |
en_US |
dc.identifier.issn |
1532-9356 |
en_US |
dc.identifier.issn |
0736-2994 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4939 |
|
dc.identifier.uri |
https://doi.org/10.1080/07362994.2020.1796707 |
en_US |
dc.description.abstract |
We study nonzero-sum stochastic differential games with risk-sensitive discounted cost criteria. Under fairly general conditions on drift term and diffusion coefficients, we establish a Nash equilibrium in Markov strategies for the discounted cost criterion. We achieve our results by studying relevant systems of coupled HJB equations. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Taylor & Francis |
en_US |
dc.subject |
Risk-sensitive criterion |
en_US |
dc.subject |
Controlled diffusions |
en_US |
dc.subject |
Coupled HJB equations |
en_US |
dc.subject |
Nash equilibrium |
en_US |
dc.subject |
Eventually stationary strategy |
en_US |
dc.subject |
TOC-AUG-2020 |
en_US |
dc.subject |
2021 |
en_US |
dc.subject |
2020-AUG-WEEK1 |
en_US |
dc.title |
Nonzero-sum risk-sensitive stochastic differential games with discounted costs |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Stochastic Analysis and Applications |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |