Digital Repository

Towards a Goldberg-Shahidi pairing for classical groups

Show simple item record

dc.contributor.author Mitra, Arnab en_US
dc.contributor.author SPALLONE, STEVEN en_US
dc.date.accessioned 2020-09-04T05:38:19Z
dc.date.available 2020-09-04T05:38:19Z
dc.date.issued 2018-03 en_US
dc.identifier.citation Forum Mathematicum, 30(2), 347-384. en_US
dc.identifier.issn 0933-7741 en_US
dc.identifier.issn 1435-5337 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5023
dc.identifier.uri - en_US
dc.description.abstract Let G 1 be an orthogonal, symplectic or unitary group over a local field and let P = M N be a maximal parabolic subgroup. Then the Levi subgroup M is the product of a group of the same type as G 1 and a general linear group, acting on vector spaces X and W, respectively. In this paper we decompose the unipotent radical N of P under the adjoint action of M, assuming dim W ≤ dim X , excluding only the symplectic case with dim W odd. The result is a Weyl-type integration formula for N with applications to the theory of intertwining operators for parabolically induced representations of G 1. Namely, one obtains a bilinear pairing on matrix coefficients, in the spirit of Goldberg–Shahidi, which detects the presence of poles of these operators at 0. en_US
dc.language.iso en en_US
dc.publisher De Gruyter en_US
dc.subject Integration formula en_US
dc.subject Maximal parabolic en_US
dc.subject Unipotent radical en_US
dc.subject Langlands-Shahidi method en_US
dc.subject Intertwining operator en_US
dc.subject 2018 en_US
dc.title Towards a Goldberg-Shahidi pairing for classical groups en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Forum Mathematicum en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account