dc.contributor.author |
Mitra, Arnab |
en_US |
dc.contributor.author |
SPALLONE, STEVEN |
en_US |
dc.date.accessioned |
2020-09-04T05:38:19Z |
|
dc.date.available |
2020-09-04T05:38:19Z |
|
dc.date.issued |
2018-03 |
en_US |
dc.identifier.citation |
Forum Mathematicum, 30(2), 347-384. |
en_US |
dc.identifier.issn |
0933-7741 |
en_US |
dc.identifier.issn |
1435-5337 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5023 |
|
dc.identifier.uri |
- |
en_US |
dc.description.abstract |
Let G 1 be an orthogonal, symplectic or unitary group over a local field and let P = M N be a maximal parabolic subgroup. Then the Levi subgroup M is the product of a group of the same type as G 1 and a general linear group, acting on vector spaces X and W, respectively. In this paper we decompose the unipotent radical N of P under the adjoint action of M, assuming dim W ≤ dim X , excluding only the symplectic case with dim W odd. The result is a Weyl-type integration formula for N with applications to the theory of intertwining operators for parabolically induced representations of G 1. Namely, one obtains a bilinear pairing on matrix coefficients, in the spirit of Goldberg–Shahidi, which detects the presence of poles of these operators at 0. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
De Gruyter |
en_US |
dc.subject |
Integration formula |
en_US |
dc.subject |
Maximal parabolic |
en_US |
dc.subject |
Unipotent radical |
en_US |
dc.subject |
Langlands-Shahidi method |
en_US |
dc.subject |
Intertwining operator |
en_US |
dc.subject |
2018 |
en_US |
dc.title |
Towards a Goldberg-Shahidi pairing for classical groups |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Forum Mathematicum |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |