dc.contributor.author |
KALELKAR, TEJAS |
en_US |
dc.date.accessioned |
2020-09-16T03:45:56Z |
|
dc.date.available |
2020-09-16T03:45:56Z |
|
dc.date.issued |
2020-10 |
en_US |
dc.identifier.citation |
Proceedings of the American Mathematical Society, 148(10), 4527-4529. |
en_US |
dc.identifier.issn |
1088-6826 |
en_US |
dc.identifier.issn |
0002-9939 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5038 |
|
dc.identifier.uri |
https://doi.org/10.1090/proc/15114 |
en_US |
dc.description.abstract |
Colding and Gabai have given an effective version of Li's theorem that non-Haken hyperbolic 3-manifolds have finitely many irreducible Heegaard splittings. As a corollary of their work, we show that Haken hyperbolic 3-manifolds have a finite collection of strongly irreducible Heegaard surfaces $ S_i$ and incompressible surfaces $ K_j$ such that any strongly irreducible Heegaard surface is a Haken sum $ S_i + \sum _j n_j K_j$, up to one-sided associates of the Heegaard surfaces. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
American Mathematical Society |
en_US |
dc.subject |
Mathematics |
en_US |
dc.subject |
2020 |
en_US |
dc.subject |
2020-SEP-WEEK2 |
en_US |
dc.subject |
TOC-SEP-2020 |
en_US |
dc.title |
Strongly irreducible Heegaard splittings of hyperbolic 3-manifolds |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Proceedings of the American Mathematical Society |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |