dc.contributor.author |
Gadgil, Siddhartha |
en_US |
dc.contributor.author |
PANDIT, SUHAS |
en_US |
dc.date.accessioned |
2020-10-13T09:55:04Z |
|
dc.date.available |
2020-10-13T09:55:04Z |
|
dc.date.issued |
2010-08 |
en_US |
dc.identifier.citation |
Proceedings of the Indian Academy of Sciences-Mathematical Sciences, 120(2), 217-241. |
en_US |
dc.identifier.issn |
0253-4142 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5104 |
|
dc.identifier.uri |
https://doi.org/10.1007/s12044-010-0020-5 |
en_US |
dc.description.abstract |
Splittings of a free group correspond to embedded spheres in the 3-manifold M = # k S 2 × S 1. These can be represented in a normal form due to Hatcher. In this paper, we determine the normal form in terms of crossings of partitions of ends corresponding to normal spheres, using a graph of trees representation for normal forms. In particular, we give a constructive proof of a criterion determining when a conjugacy class in π 2(M) can be represented by an embedded sphere. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Indian Academy of Sciences |
en_US |
dc.subject |
Free groups |
en_US |
dc.subject |
Sphere complex |
en_US |
dc.subject |
Algebraic intersection numbers |
en_US |
dc.subject |
Graphs of trees |
en_US |
dc.subject |
2010 |
en_US |
dc.title |
Splittings of free groups, normal forms and partitions of ends |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Proceedings of the Indian Academy of Sciences-Mathematical Sciences |
en_US |
dc.publication.originofpublisher |
Indian |
en_US |