Digital Repository

MINIMAL DEGREE SEQUENCE FOR TORUS KNOTS OF TYPE (p, q)

Show simple item record

dc.contributor.author Madeti, Prabhakar en_US
dc.contributor.author MISHRA, RAMA en_US
dc.date.accessioned 2020-10-13T09:55:04Z
dc.date.available 2020-10-13T09:55:04Z
dc.date.issued 2009-04 en_US
dc.identifier.citation Journal of Knot Theory and Its Ramifications, 18, (4), 485-491. en_US
dc.identifier.issn 0218-2165 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5112
dc.identifier.uri https://doi.org/10.1142/S021821650900704X en_US
dc.description.abstract In this paper we prove the following result: for coprime positive integers p and q with p < q, if r is the least positive integer such that 2p-1 and q + r are coprime, then the minimal degree sequence for a torus knot of type (p, q) is the triple (2p - 1, q + r, d) or (q + r, 2p - 1, d) where q + r + 1 ≤ d ≤ 2q - 1. en_US
dc.language.iso en en_US
dc.publisher World Scientific Publishing en_US
dc.subject Bridge number en_US
dc.subject Real deformation en_US
dc.subject Real and imaginary nodes (p-1)-alternating en_US
dc.subject 2009 en_US
dc.title MINIMAL DEGREE SEQUENCE FOR TORUS KNOTS OF TYPE (p, q) en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Journal of Knot Theory and Its Ramifications en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account