dc.contributor.author |
Madeti, Prabhakar |
en_US |
dc.contributor.author |
MISHRA, RAMA |
en_US |
dc.date.accessioned |
2020-10-13T09:55:04Z |
|
dc.date.available |
2020-10-13T09:55:04Z |
|
dc.date.issued |
2009-04 |
en_US |
dc.identifier.citation |
Journal of Knot Theory and Its Ramifications, 18, (4), 485-491. |
en_US |
dc.identifier.issn |
0218-2165 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5112 |
|
dc.identifier.uri |
https://doi.org/10.1142/S021821650900704X |
en_US |
dc.description.abstract |
In this paper we prove the following result: for coprime positive integers p and q with p < q, if r is the least positive integer such that 2p-1 and q + r are coprime, then the minimal degree sequence for a torus knot of type (p, q) is the triple (2p - 1, q + r, d) or (q + r, 2p - 1, d) where q + r + 1 ≤ d ≤ 2q - 1. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
World Scientific Publishing |
en_US |
dc.subject |
Bridge number |
en_US |
dc.subject |
Real deformation |
en_US |
dc.subject |
Real and imaginary nodes (p-1)-alternating |
en_US |
dc.subject |
2009 |
en_US |
dc.title |
MINIMAL DEGREE SEQUENCE FOR TORUS KNOTS OF TYPE (p, q) |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Knot Theory and Its Ramifications |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |