Digital Repository

On operators close to isometries

Show simple item record

dc.contributor.author CHAVAN, SAMEER en_US
dc.date.accessioned 2020-10-13T09:55:05Z
dc.date.available 2020-10-13T09:55:05Z
dc.date.issued 2008 en_US
dc.identifier.citation Studia Mathematica, 186(3), 275-293. en_US
dc.identifier.issn 0039-3223 en_US
dc.identifier.issn 1730-6337 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5117
dc.identifier.uri https://doi.org/10.4064/sm186-3-6 en_US
dc.description.abstract We introduce and discuss a class of operators, to be referred to as operators close to isometries. The Bergman-type operators, 2-hyperexpansions, expansive p-isometries, and certain alternating hyperexpansions are main examples of such operators. We establish a few decomposition theorems for operators close to isometries. Applications are given to the theory of p-isometries and of hyperexpansive operators. en_US
dc.language.iso en en_US
dc.publisher Institute of Mathematics Polish Academy of Sciences en_US
dc.subject Hyponormal en_US
dc.subject Hyperexpansive en_US
dc.subject Hypercyclicity en_US
dc.subject p-isometric en_US
dc.subject Wandering Subspace en_US
dc.subject 2008 en_US
dc.title On operators close to isometries en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Studia Mathematica en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account