dc.contributor.author |
CHAVAN, SAMEER |
en_US |
dc.date.accessioned |
2020-10-13T09:55:05Z |
|
dc.date.available |
2020-10-13T09:55:05Z |
|
dc.date.issued |
2008 |
en_US |
dc.identifier.citation |
Studia Mathematica, 186(3), 275-293. |
en_US |
dc.identifier.issn |
0039-3223 |
en_US |
dc.identifier.issn |
1730-6337 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5117 |
|
dc.identifier.uri |
https://doi.org/10.4064/sm186-3-6 |
en_US |
dc.description.abstract |
We introduce and discuss a class of operators, to be referred to as operators close to isometries. The Bergman-type operators, 2-hyperexpansions, expansive p-isometries, and certain alternating hyperexpansions are main examples of such operators. We establish a few decomposition theorems for operators close to isometries. Applications are given to the theory of p-isometries and of hyperexpansive operators. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Institute of Mathematics Polish Academy of Sciences |
en_US |
dc.subject |
Hyponormal |
en_US |
dc.subject |
Hyperexpansive |
en_US |
dc.subject |
Hypercyclicity |
en_US |
dc.subject |
p-isometric |
en_US |
dc.subject |
Wandering Subspace |
en_US |
dc.subject |
2008 |
en_US |
dc.title |
On operators close to isometries |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Studia Mathematica |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |