dc.contributor.author |
JOSHI, ROHIT |
en_US |
dc.contributor.author |
SPALLONE, STEVEN |
en_US |
dc.date.accessioned |
2020-10-16T06:36:48Z |
|
dc.date.available |
2020-10-16T06:36:48Z |
|
dc.date.issued |
2020-09 |
en_US |
dc.identifier.citation |
Representation Theory, 24, 435-469. |
en_US |
dc.identifier.issn |
1088-4165 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5129 |
|
dc.identifier.uri |
https://doi.org/10.1090/ert/552 |
en_US |
dc.description.abstract |
Let $ G$ be a connected reductive group over a field $ F$ of characteristic 0, and $ \varphi : G \to \operatorname {SO}(V)$ an orthogonal representation over $ F$. We give criteria to determine when $ \varphi $ lifts to the double cover $ \operatorname {Spin}(V)$. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
American Mathematical Society |
en_US |
dc.subject |
Reductive groups |
en_US |
dc.subject |
Orthogonal representations |
en_US |
dc.subject |
Dynkin index |
en_US |
dc.subject |
Lifting criterion |
en_US |
dc.subject |
Weyl dimension formula |
en_US |
dc.subject |
2020 |
en_US |
dc.subject |
2020-OCT-WEEK2 |
en_US |
dc.subject |
TOC-OCT-2020 |
en_US |
dc.title |
Spinoriality of orthogonal representations of reductive groups |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Representation Theory |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |