Digital Repository

Spinoriality of orthogonal representations of reductive groups

Show simple item record

dc.contributor.author JOSHI, ROHIT en_US
dc.contributor.author SPALLONE, STEVEN en_US
dc.date.accessioned 2020-10-16T06:36:48Z
dc.date.available 2020-10-16T06:36:48Z
dc.date.issued 2020-09 en_US
dc.identifier.citation Representation Theory, 24, 435-469. en_US
dc.identifier.issn 1088-4165 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5129
dc.identifier.uri https://doi.org/10.1090/ert/552 en_US
dc.description.abstract Let $ G$ be a connected reductive group over a field $ F$ of characteristic 0, and $ \varphi : G \to \operatorname {SO}(V)$ an orthogonal representation over $ F$. We give criteria to determine when $ \varphi $ lifts to the double cover $ \operatorname {Spin}(V)$. en_US
dc.language.iso en en_US
dc.publisher American Mathematical Society en_US
dc.subject Reductive groups en_US
dc.subject Orthogonal representations en_US
dc.subject Dynkin index en_US
dc.subject Lifting criterion en_US
dc.subject Weyl dimension formula en_US
dc.subject 2020 en_US
dc.subject 2020-OCT-WEEK2 en_US
dc.subject TOC-OCT-2020 en_US
dc.title Spinoriality of orthogonal representations of reductive groups en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Representation Theory en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account