Abstract:
In this paper we investigate arithmetic properties of automorphic forms on the group G' = GLm/D, for a central division-algebra D over an arbitrary number field F. The results of this article are generalizations of results in the split case, i.e. D = F, by Shimura, Harder, Waldspurger and Clozel for square-integrable automorphic forms and also by Franke and Franke–Schwermer for general automorphic representations. We also compare our theorems on automorphic forms of the group G′ to statements on automorphic forms of its split form using the global Jacquet–Langlands correspondence developed by Badulescu and Badulescu–Renard. Beside that we prove that the local version of the Jacquet–Langlands transfer at an archimedean place preserves the property of being cohomological.