Abstract:
In this work, we report the charge storage performance of Fe3O4-hierarchically perforated graphene nanosheet (Fe3O4-HPGN) based nanocomposite as an anode material in the full cell configuration with spinel LiMn2O4 cathode. When the electrochemical performance of Fe3O4-HPGN is evaluated in half-cell assembly (with Li metal) a first reversible capacity of 1002 mA h g−1 is noted at 0.1 C. The full-cell displays a reversible capacity of ~603 mA h g−1 (based on anode loading) at 0.11 C rate with working potential of ~2.7 V. Charge–discharge profiles for the full cell up to 10,000 cycles at 2.15 C rate show ~66% capacity retention. The observed electrochemical performance is attributed to the presence of hierarchical perforations on 2D graphene which help stabilize the electrochemically active Fe3O4 phase while facilitating the electron transport.