Abstract:
A geometric triangulation of a Riemannian manifold is a triangulation where the interior of each simplex is totally geodesic. Bistellar moves are local changes to the triangulation which are higher dimensional versions of the flip operation of triangulations in a plane. We show that geometric triangulations of a compact hyperbolic, spherical or Euclidean manifold are connected by geometric bistellar moves (possibly adding or removing vertices), after taking sufficiently many derived subdivisions. For dimensions 2 and 3, we show that geometric triangulations of such manifolds are directly related by geometric bistellar moves (without having to take derived subdivision).