dc.contributor.author |
BISWAS, ANUP |
en_US |
dc.contributor.author |
LIERL, JANNA |
en_US |
dc.date.accessioned |
2021-03-02T05:57:42Z |
|
dc.date.available |
2021-03-02T05:57:42Z |
|
dc.date.issued |
2020-05 |
en_US |
dc.identifier.citation |
Journal of Functional Analysis, 278(8). |
en_US |
dc.identifier.issn |
0022-1236 |
en_US |
dc.identifier.issn |
1096-0783 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5683 |
|
dc.identifier.uri |
https://doi.org/10.1016/j.jfa.2019.108429 |
en_US |
dc.description.abstract |
We consider a general class of metric measure spaces equipped with a strongly local regular Dirichlet form and provide a lower bound on the hitting time probabilities of the associated Hunt process. Using these estimates we establish (i) a generalization of the classical Lieb's inequality, and (ii) uniqueness of nonnegative super-solutions to semi-linear elliptic equations on metric measure spaces. Finally, using heat-kernel estimates we generalize the local Faber-Krahn inequality recently obtained in [28] to local and non-local Dirichlet spaces. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Lieb's inequality |
en_US |
dc.subject |
Positive supersolutions |
en_US |
dc.subject |
Principal eigenvalue |
en_US |
dc.subject |
Keller's inequality |
en_US |
dc.subject |
Moment estimate for eigenvalues |
en_US |
dc.subject |
Nodal domain |
en_US |
dc.subject |
Liouville theorem |
en_US |
dc.subject |
2020 |
en_US |
dc.title |
Faber-Krahn type inequalities and uniqueness of positive solutions on metric measure spaces |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Functional Analysis |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |