dc.contributor.author |
BISWAS, ANUP |
en_US |
dc.contributor.author |
Modasiya, Mitesh |
en_US |
dc.date.accessioned |
2021-03-02T05:58:15Z |
|
dc.date.available |
2021-03-02T05:58:15Z |
|
dc.date.issued |
2020-11 |
en_US |
dc.identifier.citation |
Differential Integral Equations, 33 (11-12), 597-624. |
en_US |
dc.identifier.issn |
0893-4983 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5692 |
|
dc.identifier.uri |
- |
en_US |
dc.description.abstract |
We consider a class of fully nonlinear integro-differential operators where the nonlocal integral has two components: the non-degenerate one corresponds to the ?-stable operator and the second one (possibly degenerate) corresponds to a class of lower order L-vy measures. Such operators do not have a global scaling property. We establish H-lder regularity, Harnack inequality and boundary Harnack property of solutions of these operators. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Khayyam Publishing |
en_US |
dc.subject |
Mathematics |
en_US |
dc.subject |
2020 |
en_US |
dc.title |
Regularity results of nonlinear perturbed stable-like operators |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Differential and Integral Equations |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |