Digital Repository

Regularity results of nonlinear perturbed stable-like operators

Show simple item record

dc.contributor.author BISWAS, ANUP en_US
dc.contributor.author Modasiya, Mitesh en_US
dc.date.accessioned 2021-03-02T05:58:15Z
dc.date.available 2021-03-02T05:58:15Z
dc.date.issued 2020-11 en_US
dc.identifier.citation Differential Integral Equations, 33 (11-12), 597-624. en_US
dc.identifier.issn 0893-4983 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5692
dc.identifier.uri - en_US
dc.description.abstract We consider a class of fully nonlinear integro-differential operators where the nonlocal integral has two components: the non-degenerate one corresponds to the ?-stable operator and the second one (possibly degenerate) corresponds to a class of lower order L-vy measures. Such operators do not have a global scaling property. We establish H-lder regularity, Harnack inequality and boundary Harnack property of solutions of these operators. en_US
dc.language.iso en en_US
dc.publisher Khayyam Publishing en_US
dc.subject Mathematics en_US
dc.subject 2020 en_US
dc.title Regularity results of nonlinear perturbed stable-like operators en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Differential and Integral Equations en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account