Digital Repository

Semi-Stable Models of Modular Curves X0(p2) and Some Arithmetic Applications

Show simple item record

dc.contributor.author BANERJEE, DEBARGHA en_US
dc.contributor.author CHAUDHURI, CHITRABHANU en_US
dc.date.accessioned 2021-04-09T05:28:30Z
dc.date.available 2021-04-09T05:28:30Z
dc.date.issued 2021-03 en_US
dc.identifier.citation Israel Journal of Mathematics, 241, 583–622. en_US
dc.identifier.issn 0021-2172 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5781
dc.identifier.uri https://doi.org/10.1007/s11856-021-2107-3 en_US
dc.description.abstract In this paper, we compute the semi-stable models of modular curves X0(p2) for oddprimes p > 3 and compute the Arakelov self-intersection numbers of the relative dualizing sheaves for these models. We give two arithmetic applications of our computations. In particular, we give an effective version of the Bogomolov conjecture following the strategy outlined by Zhang and find the stable Faltings heights of the arithmetic surfaces corresponding to these modular curves. en_US
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.subject Mathematics en_US
dc.subject 2021-APR-WEEK1 en_US
dc.subject TOC-APR-2021 en_US
dc.subject 2021 en_US
dc.title Semi-Stable Models of Modular Curves X0(p2) and Some Arithmetic Applications en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Israel Journal of Mathematics en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account