Abstract:
In [11], the second and third-named authors established a Central Limit Theorem for the error term in the Sato-Tate law for families of modular forms. This method was adapted to families of elliptic curves in [3] by the first and second-named authors. In this context, a Central Limit Theorem was established only under a strong hypothesis going beyond the Riemann Hypothesis. In the present paper, we consider a smoothed version of the Sato-Tate conjecture, which allows us to overcome several limitations. In particular, for the smoothed version, we are able to establish a Central Limit Theorem for much smaller families of modular forms, and we succeed in proving a theorem of this type for families of elliptic curves under the Riemann Hypothesis for L-functions associated to Hecke eigenforms for the full modular group.