Digital Repository

An Upper Bound on Pachner Moves Relating Geometric Triangulations

Show simple item record

dc.contributor.author KALELKAR, TEJAS en_US
dc.contributor.author PHANSE, ADVAIT en_US
dc.date.accessioned 2021-04-29T11:39:05Z
dc.date.available 2021-04-29T11:39:05Z
dc.date.issued 2021-03 en_US
dc.identifier.citation Discrete & Computational Geometry, 66, 809–830. en_US
dc.identifier.issn 0179-5376 en_US
dc.identifier.issn 1432-0444 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5824
dc.identifier.uri https://doi.org/10.1007/s00454-021-00283-7 en_US
dc.description.abstract We show that any two geometric triangulations of a closed hyperbolic, spherical, or Euclidean manifold are related by a sequence of Pachner moves and barycentric subdivisions of bounded length. This bound is in terms of the dimension of the manifold, the number of top dimensional simplexes, and bound on the lengths of edges of the triangulation. This leads to an algorithm to check from the combinatorics of the triangulation and bounds on lengths of edges, if two geometrically triangulated closed hyperbolic or low dimensional spherical manifolds are isometric or not. en_US
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.subject Hauptvermutung en_US
dc.subject Geometric triangulation en_US
dc.subject Pachner moves en_US
dc.subject Combinatorial topology en_US
dc.subject 2021-APR-WEEK3 en_US
dc.subject TOC-APR-2021 en_US
dc.subject 2021 en_US
dc.title An Upper Bound on Pachner Moves Relating Geometric Triangulations en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Discrete & Computational Geometry en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account