dc.contributor.author |
ROYCHOWDHURY, PRASUN |
en_US |
dc.date.accessioned |
2021-04-30T10:52:06Z |
|
dc.date.available |
2021-04-30T10:52:06Z |
|
dc.date.issued |
2021-03 |
en_US |
dc.identifier.citation |
Annali di Matematica Pura ed Applicata, 200, 2333–2360. |
en_US |
dc.identifier.issn |
0373-3114 |
en_US |
dc.identifier.issn |
1618-1891 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5848 |
|
dc.identifier.uri |
https://doi.org/10.1007/s10231-021-01083-9 |
en_US |
dc.description.abstract |
In this paper we prove higher order PoincarÌ© inequalities involving radial derivatives namely, ‰öÇHN|‰öàkr,HNu|2dvHN‰ä´(N‰öÕ12)2(k‰öÕl)‰öÇHN|‰öàlr,HNu|2dvHN for all u‰ööHk(HN), where underlying space is N-dimensional hyperbolic space HN, 0‰ä?l<k are integers and the constant (N‰öÕ12)2(k‰öÕl) is sharp. Furthermore we improve the above inequalities by adding Hardy-type remainder terms and the sharpness of some constants is also discussed. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Higher order Poincar̩ inequality |
en_US |
dc.subject |
Poincare-Hardy inequality |
en_US |
dc.subject |
Hyperbolic space |
en_US |
dc.subject |
2021-APR-WEEK3 |
en_US |
dc.subject |
TOC-APR-2021 |
en_US |
dc.subject |
2021 |
en_US |
dc.title |
On higher order Poincare inequalities with radial derivatives and Hardy improvements on the hyperbolic space |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Annali di Matematica Pura ed Applicata |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |