Abstract:
Herein, we report a facile and novel hydrothermal growth of Ag-doped MnWO4 material, and its electrocatalytic property towards glucose molecules has been investigated extensively. Crystal structure, morphology, and compositional features of the Ag-MnWO4 material are characterized by XRD and SEM equipped with energy-dispersive X-ray spectroscopy (EDAX). The morphology of the synthesized material is microflower structure, and each microflower consists of numerous nanorods diverging in all directions. The microflowers are homogeneous, well-organized in shape and size, and have grown uniformly. The glucose molecules are detected and sensed by Ag-MnWO4 electrocatalyst through the electrochemical method. The sensitivity of the Ag-MnWO4 material is calculated as 17.9 µAµM−1 cm−2 in the linear range 5–110 µM, and its response time is 8 s, respectively. Further, excellent selectivity and acceptable stability of the material are achieved. It is proposed that Ag-MnWO4 material would be an excellent glucose-sensing material because of its large surface area with enormous active catalytic centers.