dc.contributor.author |
BANERJEE, DEBARGHA |
en_US |
dc.contributor.author |
Saha, Arnab |
en_US |
dc.date.accessioned |
2021-06-11T04:37:27Z |
|
dc.date.available |
2021-06-11T04:37:27Z |
|
dc.date.issued |
2021-06 |
en_US |
dc.identifier.citation |
Research in Number Theory, 7, 42. |
en_US |
dc.identifier.issn |
2363-9555 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5940 |
|
dc.identifier.uri |
https://doi.org/10.1007/s40993-021-00269-7 |
en_US |
dc.description.abstract |
In this article, we construct a differential modular form of non-zero order and integral weight for compact Shimura curves over totally real fields bigger than Q. The construction uses the theory of lifting ordinary mod p Hilbert modular forms to characteristic 0 as well as the theory of Igusa curve. This is the analogue of the construction of Buium in the case of modular curves parametrizing elliptic curves with level structures. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Witt vectors |
en_US |
dc.subject |
p-adic Modular forms |
en_US |
dc.subject |
Deformation theory |
en_US |
dc.subject |
2021-JUN-WEEK2 |
en_US |
dc.subject |
TOC-JUN-2021 |
en_US |
dc.subject |
2021 |
en_US |
dc.title |
Differential modular forms over totally real fields of integral weights |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Research in Number Theory |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |