dc.contributor.author |
KAUR, YASHPREET |
en_US |
dc.contributor.author |
Srinivasan, Varadharaj R. |
en_US |
dc.date.accessioned |
2021-06-30T09:19:11Z |
|
dc.date.available |
2021-06-30T09:19:11Z |
|
dc.date.issued |
2021-06 |
en_US |
dc.identifier.citation |
Applicable Algebra in Engineering Communication and Computing. |
en_US |
dc.identifier.issn |
0938-1279 |
en_US |
dc.identifier.issn |
1432-0622 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5988 |
|
dc.identifier.uri |
https://doi.org/10.1007/s00200-021-00518-3 |
en_US |
dc.description.abstract |
We extend the theorem of Liouville on integration in finite terms to include dilogarithmic integrals. The results provide a necessary and sufficient condition for an element of the base field to have an antiderivative in a field extension generated by transcendental elementary functions and dilogarithmic integrals. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Differential Fields |
en_US |
dc.subject |
Dilogarithmic Integrals |
en_US |
dc.subject |
Elementary Extensions |
en_US |
dc.subject |
Liouville's Theorem |
en_US |
dc.subject |
2021-JUN-WEEK5 |
en_US |
dc.subject |
TOC-JUN-2021 |
en_US |
dc.subject |
2021 |
en_US |
dc.title |
Integration in finite terms: dilogarithmic integrals |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Applicable Algebra in Engineering Communication and Computing |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |