Digital Repository

Fractional elliptic systems with critical nonlinearities

Show simple item record

dc.contributor.author BHAKTA, MOUSOMI en_US
dc.contributor.author CHAKRABORTY, SOUPTIK en_US
dc.contributor.author Miyagaki, Olimpio H. en_US
dc.contributor.author Pucci, Patrizia en_US
dc.date.accessioned 2021-10-18T10:30:52Z
dc.date.available 2021-10-18T10:30:52Z
dc.date.issued 2021-11 en_US
dc.identifier.citation Nonlinearity, 34(11), 7540. en_US
dc.identifier.issn 0951-7715 en_US
dc.identifier.issn 1361-6544 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6323
dc.identifier.uri https://doi.org/10.1088/1361-6544/ac24e5 en_US
dc.description.abstract This paper deals with existence, uniqueness and multiplicity of positive solutions to the following nonlocal system of equations: \begin{equation*}\left\{\begin{aligned}& {(-{\Delta})}^{s}u=\frac{\alpha }{{2}_{s}^{{\ast}}}\vert u{\vert }^{\alpha -2}u\vert v{\vert }^{\beta }+f(x)\quad \text{in}\enspace {\mathbb{R}}^{N},\\ & {(-{\Delta})}^{s}v=\frac{\beta }{{2}_{s}^{{\ast}}}\vert v{\vert }^{\beta -2}v\vert u{\vert }^{\alpha }+g(x)\quad \text{in}\enspace {\mathbb{R}}^{N},\\ & u,\enspace v{ >}0\quad \text{in}\hspace{2pt}{\mathbb{R}}^{N},\end{aligned}\right.\qquad \qquad \qquad \qquad (\mathcal{S})\end{equation*} where 0 < s < 1, N > 2s, α, β > 1, α + β = 2N/(N − 2s), and f, g are nonnegative functionals in the dual space of ${\dot {H}}^{s}({\mathbb{R}}^{N})$, i.e., ${}_{{({\dot {H}}^{s})}^{\prime }}\langle f\hspace{-1pt},u{\rangle }_{{\dot {H}}^{s}}{\geqslant}0$, whenever u is a nonnegative function in ${\dot {H}}^{s}({\mathbb{R}}^{N})$. When f = 0 = g, we show that the ground state solution of $(\mathcal{S})$ is unique. On the other hand, when f and g are nontrivial nonnegative functionals with ker(f) = ker(g), then we establish the existence of at least two different positive solutions of $(\mathcal{S})$ provided that ${\Vert}f{{\Vert}}_{{({\dot {H}}^{s})}^{\prime }}$ and ${\Vert}g{{\Vert}}_{{({\dot {H}}^{s})}^{\prime }}$ are small enough. Moreover, we also provide a global compactness result, which gives a complete description of the Palais–Smale sequences of the above system. en_US
dc.language.iso en en_US
dc.publisher IOP Publishing en_US
dc.subject Mathematics en_US
dc.subject 2021-OCT-WEEK1 en_US
dc.subject TOC-OCT-2021 en_US
dc.subject 2021 en_US
dc.title Fractional elliptic systems with critical nonlinearities en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Nonlinearity en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account