Digital Repository

Risk-sensitive zero-sum stochastic differential game for jump–diffusions

Show simple item record

dc.contributor.author PRADHAN, SOMNATH en_US
dc.date.accessioned 2021-11-01T04:14:21Z
dc.date.available 2021-11-01T04:14:21Z
dc.date.issued 2021-11 en_US
dc.identifier.citation Systems & Control Letters, 157, 105033. en_US
dc.identifier.issn 0167-6911 en_US
dc.identifier.issn 1872-7956 en_US
dc.identifier.uri https://doi.org/10.1016/j.sysconle.2021.105033 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6363
dc.description.abstract This article is concerned with the infinite horizon risk-sensitive zero-sum stochastic differential game problem for a class of jump–diffusions controlled through the drift, and driven by a compensated Poisson process and a Wiener process. Under certain geometric stability assumption on the dynamics, we completely characterize all possible saddle point strategies in the class of stationary Markov strategies. We obtain our result by exploiting the stochastic representation of the principal eigenfunction of the associated Hamilton–Jacobi–Isaac (HJI) equation, which is a semilinear integro-partial differential equation. en_US
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.subject Lévy processes en_US
dc.subject Principal eigenvalue en_US
dc.subject Integro-partial differential equation en_US
dc.subject Saddle point equilibria en_US
dc.subject 2021-OCT-WEEK3 en_US
dc.subject TOC-OCT-2021 en_US
dc.subject 2021 en_US
dc.title Risk-sensitive zero-sum stochastic differential game for jump–diffusions en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Systems & Control Letters en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account