Digital Repository

Bimodal Wilson systems in L-2(R)

Show simple item record

dc.contributor.author BHIMANI, DIVYANG G. en_US
dc.contributor.author Okoudjou, Kasso A. en_US
dc.date.accessioned 2021-11-05T09:39:44Z
dc.date.available 2021-11-05T09:39:44Z
dc.date.issued 2022-01 en_US
dc.identifier.citation Journal of Mathematical Analysis and Applications, 505(1), 125480. en_US
dc.identifier.issn 0022-247X en_US
dc.identifier.issn 1096-0813 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6372
dc.identifier.uri https://doi.org/10.1016/j.jmaa.2021.125480 en_US
dc.description.abstract Given a window φ ∈L2(R), and lattice parameters α, β>0, we introduce a bimodal Wilson system W(φ, α, β) consisting of linear combinations of at most two elements from an associated Gabor G(φ, α, β). Fo r a class of window functions φ, we show that the Gabor system G(φ, α, β)is a tight frame of redundancy β−1if and only if the Wilson system W(φ, α, β)is Parseval system for L2(R). Examples of smooth rapidly decaying generators φare constructed. In addition, when 3 ≤β−1∈N, we prove that it is impossible to renormalize the elements of the constructed Parseval Wilson frame so as to get a well-localized orthonormal basis for L2(R). en_US
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.subject Frame en_US
dc.subject Gabor system en_US
dc.subject Orthonormal basis en_US
dc.subject Wilson system en_US
dc.subject 2021-NOV-WEEK1 en_US
dc.subject TOC-NOV-2021 en_US
dc.subject 2022 en_US
dc.title Bimodal Wilson systems in L-2(R) en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Journal of Mathematical Analysis and Applications en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account