dc.contributor.author |
BHIMANI, DIVYANG G. |
en_US |
dc.contributor.author |
Okoudjou, Kasso A. |
en_US |
dc.date.accessioned |
2021-11-05T09:39:44Z |
|
dc.date.available |
2021-11-05T09:39:44Z |
|
dc.date.issued |
2022-01 |
en_US |
dc.identifier.citation |
Journal of Mathematical Analysis and Applications, 505(1), 125480. |
en_US |
dc.identifier.issn |
0022-247X |
en_US |
dc.identifier.issn |
1096-0813 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6372 |
|
dc.identifier.uri |
https://doi.org/10.1016/j.jmaa.2021.125480 |
en_US |
dc.description.abstract |
Given a window φ ∈L2(R), and lattice parameters α, β>0, we introduce a bimodal Wilson system W(φ, α, β) consisting of linear combinations of at most two elements from an associated Gabor G(φ, α, β). Fo r a class of window functions φ, we show that the Gabor system G(φ, α, β)is a tight frame of redundancy β−1if and only if the Wilson system W(φ, α, β)is Parseval system for L2(R). Examples of smooth rapidly decaying generators φare constructed. In addition, when 3 ≤β−1∈N, we prove that it is impossible to renormalize the elements of the constructed Parseval Wilson frame so as to get a well-localized orthonormal basis for L2(R). |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Frame |
en_US |
dc.subject |
Gabor system |
en_US |
dc.subject |
Orthonormal basis |
en_US |
dc.subject |
Wilson system |
en_US |
dc.subject |
2021-NOV-WEEK1 |
en_US |
dc.subject |
TOC-NOV-2021 |
en_US |
dc.subject |
2022 |
en_US |
dc.title |
Bimodal Wilson systems in L-2(R) |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Mathematical Analysis and Applications |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |