dc.contributor.author |
Kadu, Ganesh S. |
en_US |
dc.contributor.author |
Joshi, Vinayak |
en_US |
dc.contributor.author |
GONDE, SAMRUDDHA |
en_US |
dc.date.accessioned |
2021-11-29T10:52:27Z |
|
dc.date.available |
2021-11-29T10:52:27Z |
|
dc.date.issued |
2021-12 |
en_US |
dc.identifier.citation |
Bulletin of the Australian Mathematical Society, 104(3), 362-372. |
en_US |
dc.identifier.issn |
0004-9727 |
en_US |
dc.identifier.issn |
1755-1633 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6410 |
|
dc.identifier.uri |
https://doi.org/10.1017/S0004972721000265 |
en_US |
dc.description.abstract |
We prove that the annihilating-ideal graph of a commutative semigroup with unity is, in general, not weakly perfect. This settles the conjecture of DeMeyer and Schneider [‘The annihilating-ideal graph of commutative semigroups’, J. Algebra 469 (2017), 402–420]. Further, we prove that the zero-divisor graphs of semigroups with respect to semiprime ideals are weakly perfect. This enables us to produce a large class of examples of weakly perfect zero-divisor graphs from a fixed semigroup by choosing different semiprime ideals. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Cambridge University Press |
en_US |
dc.subject |
Annihilating-ideal graph |
en_US |
dc.subject |
Semigroup |
en_US |
dc.subject |
Semiprime ideal |
en_US |
dc.subject |
Weakly perfect graph |
en_US |
dc.subject |
Zero-divisor graph |
en_US |
dc.subject |
2021-NOV-WEEK4 |
en_US |
dc.subject |
TOC-NOV-2021 |
en_US |
dc.subject |
2021 |
en_US |
dc.title |
On Weakly Perfect Annihilating-Ideal Graphs |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Bulletin of the Australian Mathematical Society |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |