dc.contributor.author |
Henderson, Greg J. |
en_US |
dc.contributor.author |
SREEJITH, G. J. |
en_US |
dc.contributor.author |
Simon, Steven H. |
en_US |
dc.date.accessioned |
2021-11-30T11:15:44Z |
|
dc.date.available |
2021-11-30T11:15:44Z |
|
dc.date.issued |
2021-11 |
en_US |
dc.identifier.citation |
Physical Review B, 104(19), 195434. |
en_US |
dc.identifier.issn |
2469-9969 |
en_US |
dc.identifier.issn |
2469-9950 |
en_US |
dc.identifier.uri |
https://doi.org/10.1103/PhysRevB.104.195434 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6424 |
|
dc.description.abstract |
We argue and numerically substantiate that the real-space entanglement spectrum (RSES) of chiral Abelian quantum Hall states is given by the spectrum of a local boundary perturbation of a (1+1)-dimensional conformal field theory, which describes an effective edge dynamics along the real-space cut. The cut-and-glue approach suggests that the low-lying RSES is equivalent to the low-lying modes of some effective edge action. The general structure of this action is deduced by mapping to a boundary critical problem, generalizing the work of Dubail, Read, and Rezayi [Phys. Rev. B 85, 115321 (2012)]. Using trial wave functions, we numerically test our model of the RSES for the ν=2/3 bosonic composite fermion state. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
American Physical Society |
en_US |
dc.subject |
Physics |
en_US |
dc.subject |
2021-NOV-WEEK4 |
en_US |
dc.subject |
TOC-NOV-2021 |
en_US |
dc.subject |
2021 |
en_US |
dc.title |
Entanglement action for the real-space entanglement spectra of chiral Abelian quantum Hall wave functions |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Physics |
en_US |
dc.identifier.sourcetitle |
Physical Review B |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |