Digital Repository

Asymptotics of the powers in finite reductive groups

Show simple item record

dc.contributor.author Kulshrestha, Amit en_US
dc.contributor.author KUNDU, RIJUBRATA en_US
dc.contributor.author SINGH, ANUPAM KUMAR en_US
dc.date.accessioned 2022-01-13T06:23:04Z
dc.date.available 2022-01-13T06:23:04Z
dc.date.issued 2021-09 en_US
dc.identifier.citation Journal of Group Theory. en_US
dc.identifier.issn 1433-5883 en_US
dc.identifier.issn 1435-4446 en_US
dc.identifier.uri https://doi.org/10.1515/jgth-2020-0206 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6526
dc.description.abstract Let 𝐺 be a connected reductive group defined over Fq. Fix an integer M≥2, and consider the power map x↦xM on 𝐺. We denote the image of G(Fq) under this map by G(Fq)M and estimate what proportion of regular semisimple, semisimple and regular elements of G(Fq) it contains. We prove that, as q→∞, the set of limits for each of these proportions is the same and provide a formula. This generalizes the well-known results for M=1 where all the limits take the same value 1. We also compute this more explicitly for the groups GL(n,q) and U(n,q) and show that the set of limits are the same for these two group, in fact, in bijection under q↦−q for a fixed 𝑀. en_US
dc.language.iso en en_US
dc.publisher De Gruyter en_US
dc.subject Mathematics en_US
dc.subject 2022-JAN-WEEK2 en_US
dc.subject 2021 en_US
dc.title Asymptotics of the powers in finite reductive groups en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Journal of Group Theory en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account