dc.contributor.author |
DESHMUKH, NEERAJ |
en_US |
dc.contributor.author |
HOGADI, AMIT |
en_US |
dc.contributor.author |
Mathur, Siddharth |
en_US |
dc.date.accessioned |
2022-03-04T04:25:22Z |
|
dc.date.available |
2022-03-04T04:25:22Z |
|
dc.date.issued |
2022-02 |
en_US |
dc.identifier.citation |
International Mathematics Research Notices, 2022(3),2224–2249. |
en_US |
dc.identifier.issn |
1687-0247 |
en_US |
dc.identifier.issn |
1073-7928 |
en_US |
dc.identifier.uri |
https://doi.org/10.1093/imrn/rnaa125 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6615 |
|
dc.description.abstract |
We prove that, under mild hypothesis, every normal algebraic space that satisfies the 1-resolution property is quasi-affine. More generally, we show that for algebraic stacks satisfying similar hypotheses, the 1-resolution property guarantees the existence of a finite flat cover by a quasi-affine scheme. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Oxford University Press |
en_US |
dc.subject |
Mathematics |
en_US |
dc.subject |
2022-MAR-WEEK1 |
en_US |
dc.subject |
TOC-MAR-2022 |
en_US |
dc.subject |
2022 |
en_US |
dc.title |
Quasi-Affineness and the 1-Resolution Property |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
International Mathematics Research Notices |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |