Digital Repository

Quasi-Affineness and the 1-Resolution Property

Show simple item record

dc.contributor.author DESHMUKH, NEERAJ en_US
dc.contributor.author HOGADI, AMIT en_US
dc.contributor.author Mathur, Siddharth en_US
dc.date.accessioned 2022-03-04T04:25:22Z
dc.date.available 2022-03-04T04:25:22Z
dc.date.issued 2022-02 en_US
dc.identifier.citation International Mathematics Research Notices, 2022(3),2224–2249. en_US
dc.identifier.issn 1687-0247 en_US
dc.identifier.issn 1073-7928 en_US
dc.identifier.uri https://doi.org/10.1093/imrn/rnaa125 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6615
dc.description.abstract We prove that, under mild hypothesis, every normal algebraic space that satisfies the 1-resolution property is quasi-affine. More generally, we show that for algebraic stacks satisfying similar hypotheses, the 1-resolution property guarantees the existence of a finite flat cover by a quasi-affine scheme. en_US
dc.language.iso en en_US
dc.publisher Oxford University Press en_US
dc.subject Mathematics en_US
dc.subject 2022-MAR-WEEK1 en_US
dc.subject TOC-MAR-2022 en_US
dc.subject 2022 en_US
dc.title Quasi-Affineness and the 1-Resolution Property en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle International Mathematics Research Notices en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account