Digital Repository

Zero-One Laws for Existential First-Order Sentences of Bounded Quantifier Depth

Show simple item record

dc.contributor.author PODDER, MOUMANTI en_US
dc.contributor.author Zhukovskii, Maksim en_US
dc.date.accessioned 2022-03-30T10:13:28Z
dc.date.available 2022-03-30T10:13:28Z
dc.date.issued 2022-04 en_US
dc.identifier.citation ACM Transactions on Computational Logic, 23(2), 1-27. en_US
dc.identifier.issn 1529-3785 en_US
dc.identifier.issn 557-945X en_US
dc.identifier.uri https://doi.org/10.1145/3489466 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6685
dc.description.abstract For any fixed positive integer k, let αk denote the smallest α ∈ (0,1) such that the random graph sequence {G(n, n-α)}n does not satisfy the zero-one law for the set εk of all existential first-order sentences that are of quantifier depth at most k. This article finds upper and lower bounds on αk, showing that as k → ∞, we have α k = (k - 2 - t(k))-1 for some function t(k) = Θ (k-2). We also establish the precise value of αk when k = 4. en_US
dc.language.iso en en_US
dc.publisher Association for Computing Machinery en_US
dc.subject Existential first-order logic en_US
dc.subject Zero-one laws en_US
dc.subject Ehrenfeucht games en_US
dc.subject Strictly balanced graphs en_US
dc.subject Alpha-safe pairs en_US
dc.subject Graph extension properties en_US
dc.subject 2022-MAR-WEEK3 en_US
dc.subject TOC-MAR-2022 en_US
dc.subject 2022 en_US
dc.title Zero-One Laws for Existential First-Order Sentences of Bounded Quantifier Depth en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle ACM Transactions on Computational Logic en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account