dc.contributor.author |
PODDER, MOUMANTI |
en_US |
dc.contributor.author |
Zhukovskii, Maksim |
en_US |
dc.date.accessioned |
2022-03-30T10:13:28Z |
|
dc.date.available |
2022-03-30T10:13:28Z |
|
dc.date.issued |
2022-04 |
en_US |
dc.identifier.citation |
ACM Transactions on Computational Logic, 23(2), 1-27. |
en_US |
dc.identifier.issn |
1529-3785 |
en_US |
dc.identifier.issn |
557-945X |
en_US |
dc.identifier.uri |
https://doi.org/10.1145/3489466 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6685 |
|
dc.description.abstract |
For any fixed positive integer k, let αk denote the smallest α ∈ (0,1) such that the random graph sequence {G(n, n-α)}n does not satisfy the zero-one law for the set εk of all existential first-order sentences that are of quantifier depth at most k. This article finds upper and lower bounds on αk, showing that as k → ∞, we have α k = (k - 2 - t(k))-1 for some function t(k) = Θ (k-2). We also establish the precise value of αk when k = 4. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Association for Computing Machinery |
en_US |
dc.subject |
Existential first-order logic |
en_US |
dc.subject |
Zero-one laws |
en_US |
dc.subject |
Ehrenfeucht games |
en_US |
dc.subject |
Strictly balanced graphs |
en_US |
dc.subject |
Alpha-safe pairs |
en_US |
dc.subject |
Graph extension properties |
en_US |
dc.subject |
2022-MAR-WEEK3 |
en_US |
dc.subject |
TOC-MAR-2022 |
en_US |
dc.subject |
2022 |
en_US |
dc.title |
Zero-One Laws for Existential First-Order Sentences of Bounded Quantifier Depth |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
ACM Transactions on Computational Logic |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |