Abstract:
Bergmann’s rule predicts a larger body size for endothermic organisms in colder environments. The contrasting results from previous studies may be due to the differences in taxonomic (intraspecific, interspecific and community) and spatial (latitudinal vs elevational) scales. We compared Bergmann’s patterns for endotherms (Aves) and ectotherms (Lepidoptera: Sphingidae) along the same 2.6 km elevational transect in the eastern Himalayas. Using a large data spanning 3,302 hawkmoths (76 morpho-species) and 15,746 birds (245 species), we compared the patterns at the intraspecific (hawkmoths only), interspecific and community scales. Hawkmoths exhibited a positive Bergmann’s pattern at the intraspecific and abundance-weighted community scale. Contrary to this, birds exhibited a strong converse Bergmann’s pattern at interspecific and community scales, both with and without abundance. Overall, our results indicate that incorporation of information on intraspecific variation and/or species relative abundances influences the results to a large extent. The multiplicity of patterns at a single location provides the opportunity to disentangle the relative contribution of individual- and species-level processes by integrating data across multiple nested taxonomic scales for the same taxa. We suggest that future studies of Bergmann’s patterns should explicitly address taxonomic and spatial scale dependency, with species relative abundance and intraspecific trait variation as essential ingredients especially at short elevational scales.