dc.contributor.author |
Gongopadhyay, Krishnendu |
en_US |
dc.contributor.author |
KALANE, SAGAR B. |
en_US |
dc.date.accessioned |
2022-04-04T08:56:45Z |
|
dc.date.available |
2022-04-04T08:56:45Z |
|
dc.date.issued |
2021-03 |
en_US |
dc.identifier.citation |
Journal of the Australian Mathematical Society. |
en_US |
dc.identifier.issn |
1446-7887 |
en_US |
dc.identifier.issn |
1446-8107 |
en_US |
dc.identifier.uri |
https://doi.org/10.1017/S144678872100001X |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6716 |
|
dc.description.abstract |
Let G(n)=Sp(n,1) or SU(n,1) . We classify conjugation orbits of generic pairs of loxodromic elements in G(n) . Such pairs, called ‘nonsingular’, were introduced by Gongopadhyay and Parsad for SU(3,1) . We extend this notion and classify G(n) -conjugation orbits of such elements in arbitrary dimension. For n=3 , they give a subspace that can be parametrized using a set of coordinates whose local dimension equals the dimension of the underlying group. We further construct twist-bend parameters to glue such representations and obtain local parametrization for generic representations of the fundamental group of a closed (genus g≥2 ) oriented surface into G(3) . |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Cambridge University Press |
en_US |
dc.subject |
Character variety |
en_US |
dc.subject |
Complex hyperbolic space |
en_US |
dc.subject |
Loxodromic elements |
en_US |
dc.subject |
Quaternionic hyperbolic space |
en_US |
dc.subject |
Surface group |
en_US |
dc.subject |
Traces |
en_US |
dc.subject |
2021 |
en_US |
dc.title |
Local Coordinates for Complex and Quaternionic Hyperbolic Pairs |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of the Australian Mathematical Society |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |