Abstract:
The diversity of animal acoustic signals has evolved due to multiple ecological processes, both biotic and abiotic. At the level of communities of signaling animals, these processes may lead to diverse outcomes, including partitioning of acoustic signals along multiple axes (divergent signal parameters, signaling locations, and timing). Acoustic data provides information on the organization, diversity and dynamics of an acoustic community, and thus enables study of ecological change and turnover in a non-intrusive way. In this review, we lay out how community bioacoustics (the study of acoustic community structure and dynamics), has value in ecological monitoring and conservation of diverse landscapes and taxa. First, we review the concepts of signal space, signal partitioning and their effects on the structure of acoustic communities. Next, we highlight how spatiotemporal ecological change is reflected in acoustic community structure, and the potential this presents in monitoring and conservation. As passive acoustic monitoring gains popularity worldwide, we propose that the analytical framework of community bioacoustics has promise in studying the response of entire suites of species (from insects to large whales) to rapid anthropogenic change.