Digital Repository

Special Values of L-functions for GL(n) Over a CM Field

Show simple item record

dc.contributor.author RAGHURAM, A. en_US
dc.date.accessioned 2022-04-07T03:46:06Z
dc.date.available 2022-04-07T03:46:06Z
dc.date.issued 2021-02 en_US
dc.identifier.citation International Mathematics Research Notices en_US
dc.identifier.issn 1073-7928 en_US
dc.identifier.issn 1687-0247 en_US
dc.identifier.uri https://doi.org/10.1093/imrn/rnaa383 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6728
dc.description.abstract We prove a Galois-equivariant algebraicity result for the ratios of successive critical values of L-functions for GL(n)/F, where F is a totally imaginary quadratic extension of a totally real number field F+. The proof uses (1) results of Arthur and Clozel on automorphic induction from GL(n)/F to GL(2n)/F+, (2) results of my work with Harder on ratios of critical values for L-functions of GL(2n)/F+, and (3) period relations amongst various automorphic and cohomological periods for GL(2n)/F+ using my work with Shahidi. The reciprocity law inherent in the algebraicity result is exactly as predicted by Deligne's conjecture on the special values of motivic L-functions. en_US
dc.language.iso en en_US
dc.publisher Oxford University Press en_US
dc.subject Eisenstein Cohomology en_US
dc.subject Rationality en_US
dc.subject 2021 en_US
dc.title Special Values of L-functions for GL(n) Over a CM Field en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle International Mathematics Research Notices en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account