dc.contributor.author |
RAGHURAM, A. |
en_US |
dc.date.accessioned |
2022-04-07T03:46:06Z |
|
dc.date.available |
2022-04-07T03:46:06Z |
|
dc.date.issued |
2021-02 |
en_US |
dc.identifier.citation |
International Mathematics Research Notices |
en_US |
dc.identifier.issn |
1073-7928 |
en_US |
dc.identifier.issn |
1687-0247 |
en_US |
dc.identifier.uri |
https://doi.org/10.1093/imrn/rnaa383 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6728 |
|
dc.description.abstract |
We prove a Galois-equivariant algebraicity result for the ratios of successive critical values of L-functions for GL(n)/F, where F is a totally imaginary quadratic extension of a totally real number field F+. The proof uses (1) results of Arthur and Clozel on automorphic induction from GL(n)/F to GL(2n)/F+, (2) results of my work with Harder on ratios of critical values for L-functions of GL(2n)/F+, and (3) period relations amongst various automorphic and cohomological periods for GL(2n)/F+ using my work with Shahidi. The reciprocity law inherent in the algebraicity result is exactly as predicted by Deligne's conjecture on the special values of motivic L-functions. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Oxford University Press |
en_US |
dc.subject |
Eisenstein Cohomology |
en_US |
dc.subject |
Rationality |
en_US |
dc.subject |
2021 |
en_US |
dc.title |
Special Values of L-functions for GL(n) Over a CM Field |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
International Mathematics Research Notices |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |