Digital Repository

On the construction of cospectral nonisomorphic bipartite graphs

Show simple item record

dc.contributor.author Kannan, M. Rajesh en_US
dc.contributor.author Pragada, Shivaramakrishna en_US
dc.contributor.author WANKHEDE, HITESH en_US
dc.date.accessioned 2022-04-22T08:11:56Z
dc.date.available 2022-04-22T08:11:56Z
dc.date.issued 2022-08 en_US
dc.identifier.citation Discrete Mathematics, 348(8), 112916. en_US
dc.identifier.issn 0012-365X en_US
dc.identifier.uri https://doi.org/10.1016/j.disc.2022.112916 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6746
dc.description.abstract In this article, we construct bipartite graphs which are cospectral for both the adjacency and normalized Laplacian matrices using the notion of partitioned tensor products. This extends the construction of Ji, Gong, and Wang [9]. Our proof of the cospectrality of adjacency matrices simplifies the proof of the bipartite case of Godsil and McKay's construction [4], and shows that the corresponding normalized Laplacian matrices are also cospectral. We partially characterize the isomorphism in Godsil and McKay's construction, and generalize Ji et al.'s characterization of the isomorphism to biregular bipartite graphs. The essential idea in characterizing the isomorphism uses Hammack's cancellation law as opposed to Hall's marriage theorem used by Ji et al. en_US
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.subject Adjacency matrix en_US
dc.subject Normalized Laplacian matrix en_US
dc.subject Cospectral bipartite graphs en_US
dc.subject Hammack's cancellation law en_US
dc.subject Partitioned tensor product en_US
dc.subject 2022-APR-WEEK2 en_US
dc.subject TOC-APR-2022 en_US
dc.subject 2022 en_US
dc.title On the construction of cospectral nonisomorphic bipartite graphs en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Discrete Mathematics en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account