Digital Repository

Harnack inequality and principal eigentheory for general infinity Laplacian operators with gradient in RN and applications

Show simple item record

dc.contributor.author BISWAS, ANUP en_US
dc.contributor.author Hoang-Hung Vo en_US
dc.date.accessioned 2022-05-23T10:39:23Z
dc.date.available 2022-05-23T10:39:23Z
dc.date.issued 2022-08 en_US
dc.identifier.citation Calculus of Variations and Partial Differential Equations, 61(4), 122. en_US
dc.identifier.issn 0944-2669 en_US
dc.identifier.issn 1432-0835 en_US
dc.identifier.uri https://doi.org/10.1007/s00526-022-02227-2 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6987
dc.description.abstract Under the lack of variational structure and nondegeneracy, we investigate three notions of generalized principal eigenvalue for a general infinity Laplacian operator with gradient and homogeneous term. A Harnack inequality is proved to support our analysis. This is a continuation of our first work (Biswas and Vo in Liouville theorems for infinity Laplacian with gradient and KPP type equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. https://doi.org/10.2422/2036-2145.202105_050) and a contribution in the development of the theory of generalized principal eigenvalue beside the works (Berestycki et al. in Commun Pure Appl Math 47(1):47–92, 1994; Berestycki and Rossi in JEMS 8:195–215, 2006; Berestycki and Rossi in Commun Pure Appl Math 68(6):1014–1065, 2015; Berestycki et al. in J Math Pures Appl 103:1276–1293, 2015; Nguyen and Vo in Calc Var Partial Differ Equ 58(3):102 2019). We use these notions to characterize the validity of maximum principle and study the existence, nonexistence and uniqueness of positive solutions of Fisher-KPP type equations in the whole space. The sliding method is intrinsically improved for infinity Laplacian to solve the problem. The results are related to the Liouville type results, which will be meticulously explained. en_US
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.subject Elliptic-operators en_US
dc.subject Positive solutions en_US
dc.subject Maximum principle en_US
dc.subject Eigenvalue en_US
dc.subject Existence en_US
dc.subject Equations en_US
dc.subject 2022-MAY-WEEK3 en_US
dc.subject TOC-MAY2022 en_US
dc.subject 2022 en_US
dc.title Harnack inequality and principal eigentheory for general infinity Laplacian operators with gradient in RN and applications en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Calculus of Variations and Partial Differential Equations en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account