Digital Repository

A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution

Show simple item record

dc.contributor.author CMS Collaboration en_US
dc.contributor.author Sirunyan, A. M. en_US
dc.contributor.author DUBE, SOURABH en_US
dc.contributor.author KANSAL, B. en_US
dc.contributor.author KAPOOR, A. en_US
dc.contributor.author KOTHEKAR, K. en_US
dc.contributor.author PANDEY, S. en_US
dc.contributor.author RANE, A. en_US
dc.contributor.author RASTOGI, A. en_US
dc.contributor.author SHARMA, SEEMA et al. en_US
dc.date.accessioned 2022-06-13T04:29:00Z
dc.date.available 2022-06-13T04:29:00Z
dc.date.issued 2020-10 en_US
dc.identifier.citation Computing and Software for Big Science, 4, 10. en_US
dc.identifier.issn 2510-2044 en_US
dc.identifier.uri https://doi.org/10.1007/s41781-020-00041-z en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7030
dc.description.abstract We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton–proton collisions at an energy of s√=13TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb−1. A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to bb¯. en_US
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.subject CMS en_US
dc.subject b jets en_US
dc.subject Higgs boson en_US
dc.subject Jet energy en_US
dc.subject Jet resolution en_US
dc.subject Deep learning en_US
dc.subject 2020 en_US
dc.title A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution en_US
dc.type Article en_US
dc.contributor.department Dept. of Physics en_US
dc.identifier.sourcetitle Computing and Software for Big Science en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account