Digital Repository

Generalized principal eigenvalues of convex nonlinear elliptic operators in ℝN

Show simple item record

dc.contributor.author BISWAS, ANUP en_US
dc.contributor.author ROYCHOWDHURY, PRASUN en_US
dc.date.accessioned 2022-06-16T04:17:46Z
dc.date.available 2022-06-16T04:17:46Z
dc.date.issued 2022-10 en_US
dc.identifier.citation Advances in Calculus of Variations, 15(4). en_US
dc.identifier.issn 1864-8266 en_US
dc.identifier.uri https://doi.org/10.1515/acv-2020-0035 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7087
dc.description.abstract We study the generalized eigenvalue problem in R N for a general convex nonlinear elliptic operator which is locally elliptic and positively 1-homogeneous. Generalizing [H. Berestycki and L. Rossi, Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains, Comm. Pure Appl. Math. 68 2015, 6, 1014–1065], we consider three different notions of generalized eigenvalues and compare them. We also discuss the maximum principles and uniqueness of principal eigenfunctions. en_US
dc.language.iso en en_US
dc.publisher De Gruyter en_US
dc.subject Fully nonlinear operators en_US
dc.subject Principal eigenvalue en_US
dc.subject Dirichlet problem en_US
dc.subject Half-eigenvalues en_US
dc.subject Uniqueness en_US
dc.subject 2022 en_US
dc.title Generalized principal eigenvalues of convex nonlinear elliptic operators in ℝN en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Advances in Calculus of Variations en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account