dc.contributor.author |
BISWAS, ANUP |
en_US |
dc.contributor.author |
ROYCHOWDHURY, PRASUN |
en_US |
dc.date.accessioned |
2022-06-16T04:17:46Z |
|
dc.date.available |
2022-06-16T04:17:46Z |
|
dc.date.issued |
2022-10 |
en_US |
dc.identifier.citation |
Advances in Calculus of Variations, 15(4). |
en_US |
dc.identifier.issn |
1864-8266 |
en_US |
dc.identifier.uri |
https://doi.org/10.1515/acv-2020-0035 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7087 |
|
dc.description.abstract |
We study the generalized eigenvalue problem in R N for a general convex nonlinear elliptic operator which is locally elliptic and positively 1-homogeneous. Generalizing [H. Berestycki and L. Rossi, Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains, Comm. Pure Appl. Math. 68 2015, 6, 1014–1065], we consider three different notions of generalized eigenvalues and compare them. We also discuss the maximum principles and uniqueness of principal eigenfunctions. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
De Gruyter |
en_US |
dc.subject |
Fully nonlinear operators |
en_US |
dc.subject |
Principal eigenvalue |
en_US |
dc.subject |
Dirichlet problem |
en_US |
dc.subject |
Half-eigenvalues |
en_US |
dc.subject |
Uniqueness |
en_US |
dc.subject |
2022 |
en_US |
dc.title |
Generalized principal eigenvalues of convex nonlinear elliptic operators in ℝN |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Advances in Calculus of Variations |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |