Digital Repository

The Least Prime Congruent to One Modulo n

Show simple item record

dc.contributor.author Thangadurai, R. en_US
dc.contributor.author VATWANI, A. en_US
dc.date.accessioned 2022-06-24T10:42:13Z
dc.date.available 2022-06-24T10:42:13Z
dc.date.issued 2011-01 en_US
dc.identifier.citation American Mathematical Monthly, 118(8). en_US
dc.identifier.issn 0002-9890 en_US
dc.identifier.uri https://doi.org/10.4169/amer.math.monthly.118.08.737 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7192
dc.description.abstract It is known that there are infinitely many primes congruent to 1 (mod n) for any integer n > 1. In this paper, we use an elementary argument to prove that the least such prime is at most 2ϕ(n) + 1 −1, where ϕ is the Euler totient function. en_US
dc.language.iso en en_US
dc.publisher Taylor & Francis en_US
dc.subject Mathemaitcis en_US
dc.subject 2011 en_US
dc.title The Least Prime Congruent to One Modulo n en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle American Mathematical Monthly en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account