dc.contributor.author |
Thangadurai, R. |
en_US |
dc.contributor.author |
VATWANI, A. |
en_US |
dc.date.accessioned |
2022-06-24T10:42:13Z |
|
dc.date.available |
2022-06-24T10:42:13Z |
|
dc.date.issued |
2011-01 |
en_US |
dc.identifier.citation |
American Mathematical Monthly, 118(8). |
en_US |
dc.identifier.issn |
0002-9890 |
en_US |
dc.identifier.uri |
https://doi.org/10.4169/amer.math.monthly.118.08.737 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7192 |
|
dc.description.abstract |
It is known that there are infinitely many primes congruent to 1 (mod n) for any integer n > 1. In this paper, we use an elementary argument to prove that the least such prime is at most 2ϕ(n) + 1 −1, where ϕ is the Euler totient function. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Taylor & Francis |
en_US |
dc.subject |
Mathemaitcis |
en_US |
dc.subject |
2011 |
en_US |
dc.title |
The Least Prime Congruent to One Modulo n |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
American Mathematical Monthly |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |